MATH 1A - QUIZ 8 - SOLUTIONS

PEYAM RYAN TABRIZIAN

(1) (4 points; 1 point each) Let $f(x)=x^{5}-5 x^{4}$
(a) Find the intervals of increase and decrease

$$
f^{\prime}(x)=5 x^{4}-20 x^{3}=5 x^{3}(x-4)
$$

Now $f^{\prime}(x)=0 \Leftrightarrow x=0$ or $x=4$.
Now drawing a sign table (Note that you did not have to calculate $f(0)$ and $f(4)$), we get:

1A/Math 1A - Fall 2013/Quizzes/Quiz8table1.png

x	$\begin{array}{ccc}-00 & 0 & 4\end{array}$
$5 \mathrm{x}^{3}$	- $1+$
x-4	- $\quad+$
$\mathrm{f}^{\prime}(\mathrm{x})$	$\pm \infty$ - +
$\mathrm{f}(\mathrm{x})$	

From this table, we can see that:

- f is increasing on $(-\infty, 0) \cup(0, \infty)$
- f is decreasing on $(0,4)$

[^0](b) Find the local maxima and minima.

Using the table above and the first derivative test, we get that f has a local maximum at 0 (f^{\prime} changes sign from positive to negative there)

And f has a local minimum at 4 (f^{\prime} changes sign from negative to positive there).
(c) Find the intervals of concavity and inflection points.

$$
f^{\prime \prime}(x)=20 x^{3}-60 x^{2}=20 x^{2}(x-3)
$$

Then $f^{\prime \prime}(x)=0 \Leftrightarrow x=0$ or $x=3$. Now using the following sign table, we can determine the concavity and inflection points of f :

1A/Math 1A - Fall 2013/Quizzes/Quiz8table2.png

From this table, we can see that:

- f is concave up on $(3, \infty)$
- f is concave down on $(-\infty, 0) \cup(0,3)$ (or $(-\infty, 3)$ if you'd like)

In particular, f changes concavity at 3 , so f has an inflection point at $x=3$.
(Note that f does NOT have an inflection point at 0 because f DOESN'T
change concavity there!)
(d) Sketch the graph of f

Again, note that the actual values of -162 and -256 were not required.
1A/Math 1A - Fall 2013/Quizzes/Quiz8graph.png

(2) (3 points; 1.5 points each) Evaluate the following limits:
(a) $\lim _{x \rightarrow 0^{+}} x(\ln (x))^{2}$

By using l'Hopital's rule twice (both times having the form $\frac{\infty}{\infty}$, we get:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(x(\ln (x))^{2}\right) & =\lim _{x \rightarrow 0^{+}} \frac{(\ln (x))^{2}}{\frac{1}{x}} \\
& \stackrel{H}{=} \lim _{x \rightarrow 0^{+}} \frac{2 \frac{\ln (x)}{x}}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}}-2 x \ln (x) \\
& =\lim _{x \rightarrow 0^{+}} \frac{-2 \ln (x)}{\frac{1}{x}} \\
& \stackrel{H}{=} \lim _{x \rightarrow 0^{+}} \frac{\frac{-2}{x}}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}} 2 x \\
& =0
\end{aligned}
$$

(b) $\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{b x}$ (here a and b are constants)

Notice that this is of the form 1^{∞}, hence:
(1) Let $y=\left(1+\frac{a}{x}\right)^{b x}$
(2) $\ln (y)=b x \ln \left(1+\frac{a}{x}\right)$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \ln (y) & =\lim _{x \rightarrow \infty} b x \ln \left(1+\frac{a}{x}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{a}{x}\right)}{\frac{1}{b x}} \\
& \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{\frac{1}{1+\frac{a}{x}} \times \frac{-a}{x^{2}}}{-\frac{1}{b\left(x^{2}\right)}} \\
& =\lim _{x \rightarrow \infty} a b\left(\frac{1}{1+\frac{a}{x}}\right) \\
& =a b\left(\frac{1}{1+0}\right) \\
& =a b
\end{aligned}
$$

(3) Hence $\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{b x}=e^{a b}$
(3) (3 points) We say that x is a fixed point of f if $f(x)=x$
(for example, -1 is a fixed point of x^{3} because $(-1)^{3}=-1$)
Show that if $f^{\prime}(x) \neq 1$ for all x, then f has at most one fixed point.

Suppose that f has at least 2 fixed points a and b. Then $f(a)=a$ and $f(b)=b$ (by definition of fixed points).

Now, since f is differentiable on $[a, b]$, by the Mean Value Theorem on $[a, b]$, we get that for some c in (a, b) :

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

But $\frac{f(b)-f(a)}{b-a}=\frac{b-a}{b-a}=1$, so we get:

$$
f^{\prime}(c)=1
$$

But this contradicts the fact that $f^{\prime}(x) \neq 1$ for all $x \Longrightarrow \Longleftarrow$ Hence f has at most one fixed point.

[^0]: Date: Friday, November 1st, 2013.

