MATH 1A - QUIZ 8 - SOLUTIONS

PEYAM RYAN TABRIZIAN

- (1) (4 points; 1 point each) Let $f(x) = x^5 5x^4$
 - (a) Find the intervals of increase and decrease

$$f'(x) = 5x^4 - 20x^3 = 5x^3(x-4)$$

Now $f'(x) = 0 \Leftrightarrow x = 0$ or x = 4.

Now drawing a sign table (Note that you did not have to calculate f(0) and f(4)), we get:

1A/Math 1A - Fall 2013/Quizzes/Quiz8table1.png

From this table, we can see that:

- f is increasing on $(-\infty, 0) \cup (0, \infty)$
- f is decreasing on (0, 4)

Date: Friday, November 1st, 2013.

(b) Find the local maxima and minima.

Using the table above and the first derivative test, we get that f has a local maximum at 0 (f' changes sign from positive to negative there)

And f has a local minimum at 4 (f' changes sign from negative to positive there).

(c) Find the intervals of concavity and inflection points.

$$f''(x) = 20x^3 - 60x^2 = 20x^2(x-3)$$

Then $f''(x) = 0 \Leftrightarrow x = 0$ or x = 3. Now using the following sign table, we can determine the concavity and inflection points of f:

1A/Math 1A - Fall 2013/Quizzes/Quiz8table2.png

x	- 00 () 3	00
20x ²	+ (> +	+
x - 3	1	0	+
(x)	- ($\phi - \phi$	Ŧ
f(x)	C.D.	C.D. I.P.	C.U.

From this table, we can see that:

- f is concave up on $(3, \infty)$

- f is concave down on $(-\infty, 0) \cup (0, 3)$ (or $(-\infty, 3)$ if you'd like) In particular, f changes concavity at 3, so f has an inflection point at x = 3. (Note that f does **NOT** have an inflection point at 0 because f **DOESN'T** change concavity there!)

2

(d) Sketch the graph of f

Again, note that the actual values of $-162 \ {\rm and} \ -256$ were not required.

1A/Math 1A - Fall 2013/Quizzes/Quiz8graph.png

- (2) (3 points; 1.5 points each) Evaluate the following limits:
 - (a) $\lim_{x\to 0^+} x (\ln(x))^2$

By using l'Hopital's rule twice (both times having the form $\frac{\infty}{\infty},$ we get:

$$\lim_{x \to 0^+} \left(x \left(\ln(x) \right)^2 \right) = \lim_{x \to 0^+} \frac{\left(\ln(x) \right)^2}{\frac{1}{x}}$$
$$\stackrel{H}{=} \lim_{x \to 0^+} \frac{2\frac{\ln(x)}{x}}{-\frac{1}{x^2}}$$
$$= \lim_{x \to 0^+} -2x \ln(x)$$
$$= \lim_{x \to 0^+} \frac{-2\ln(x)}{\frac{1}{x}}$$
$$\stackrel{H}{=} \lim_{x \to 0^+} \frac{-2\ln(x)}{-\frac{1}{x^2}}$$
$$= \lim_{x \to 0^+} 2x$$
$$= 0$$

(b) $\lim_{x\to\infty} \left(1+\frac{a}{x}\right)^{bx}$ (here a and b are constants)

Notice that this is of the form 1^{∞} , hence: (1) Let $y = \left(1 + \frac{a}{x}\right)^{bx}$

(2)
$$\ln(y) = bx \ln\left(1 + \frac{a}{x}\right)$$

$$\lim_{x \to \infty} \ln(y) = \lim_{x \to \infty} bx \ln\left(1 + \frac{a}{x}\right)$$
$$= \lim_{x \to \infty} \frac{\ln\left(1 + \frac{a}{x}\right)}{\frac{1}{bx}}$$
$$\stackrel{H}{=} \lim_{x \to \infty} \frac{\frac{1 + \frac{a}{x}}{x} \times \frac{-a}{x^2}}{-\frac{1}{b(x^2)}}$$
$$= \lim_{x \to \infty} ab\left(\frac{1}{1 + \frac{a}{x}}\right)$$
$$= ab\left(\frac{1}{1 + 0}\right)$$
$$= ab$$

(3) Hence $\lim_{x\to\infty} \left(1+\frac{a}{x}\right)^{bx} = e^{ab}$

(3) (3 points) We say that x is a **fixed point** of f if f(x) = x

(for example, -1 is a fixed point of x^3 because $(-1)^3 = -1$)

Show that if $f'(x) \neq 1$ for all x, then f has at most one fixed point.

Suppose that f has at least 2 fixed points a and b. Then f(a) = a and f(b) = b (by definition of fixed points).

Now, since f is differentiable on [a, b], by the **Mean Value Theorem** on [a, b], we get that for some c in (a, b):

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

But $\frac{f(b) - f(a)}{b - a} = \frac{b - a}{b - a} = 1$, so we get:

f'(c) = 1

But this contradicts the fact that $f'(x) \neq 1$ for all $x \Longrightarrow \Leftarrow$

Hence f has at most one fixed point.